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Question 6 

For the given utility functions U(1) and U(2), run the market with model (3), separately with the 
parameter 0 < param < 1.  Compare the results generated from the two on-line models and their 
off-line call auction models using simulation data.  Which one accepts more bids and which one 
has better prediction power? 

For the on-line auction models, I wrote MATLAB code to solve the optimization 
problem each time a bid is submitted, and specifically did so for both the exponential utility 
function and the logarithmic utility function.  I derived my code directly from Lecture Note #15, 
Slide 11.  I imported the data from our class Excel extra credit game bids of the following 
games: Arizona, California, Colorado, Notre Dame, Oregon, Oregon State, UCLA, and 
Washington State.  The code keeps track of how many bids have been accepted and rejected, in 
addition to per bid updates on the new price (p) and bid (b) vectors.  The code for this is in 
Appendix A.  In this specific experiment, m = 8, param = 0.5.  The results of the program are as 
follows: 

LOGARITHMIC UTILITY FUNCTION: U(s) = param/m(∑ log(s_i)) 

    Bids Accepted Bids Rejected 

Arizona   127   0 

California   15   60 

Colorado   7   74 

Notre Dame   15   112 

Oregon    5   50 

Oregon State   88   0 

UCLA    24   54 
  
Washington State  101   0 

TOTAL   382   350 
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EXPONENTIAL UTILITY FUNCTION: U(s) = b/m(∑ 1 - exp(-s_i)) 

    Bids Accepted Bids Rejected 

Arizona   9   118 

California   4   71 

Colorado   5   76 

Notre Dame   8   119 

Oregon    5   50 

Oregon State   3   85 

UCLA    3   75 
  
Washington State  10   91 

TOTAL   47   685 

Additionally, here are the per game simulation results in terms of predictive power.  The states 
noted in the 1st column are the states which garnered the highest prices at the end of the 
simulation – the shared price for all these states is in parenthesis.  The state in the 2nd column is 
the winning state..  The 3rd column indicates whether the winning state was among the highest 
valued states. 

LOGARITHMIC UTILITY FUNCTION: U(s) = param/m(∑ log(s_i)) 

    Highest Price States  Winning State Y:N 

Arizona   1, 2, 3, 4, 8 – (0.2)   5  N 

California   2, 3, 4, 5, 6, 7 – (.1667)  7  Y 

Colorado   1, 2, 8 – (.3167)   8  Y 

Notre Dame   1, 2, 3 – (.3167)   4  N 
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Oregon   2, 3 – (.4750)     5  N 

Oregon State   1, 2, 3, 5, 6, 7, 8 – (.1429)  5  Y 

UCLA    2, 3 – (.36)    7  N 
  
Washington State  1, 2, 3, 4 – (.25)   5  N 

TOTAL          3:5 

EXPONENTIAL UTILITY FUNCTION: U(s) = b/m(∑ 1 - exp(-s_i)) 

    Highest Price States  Winning State Y:N 

Arizona   5, 6, 7 – (.3333)   5  Y 

California   1, 8 – (.5)    7  N 

Colorado   1, 2, 8 – (.3333)   8  Y 

Notre Dame   1, 2, 3 – (.3333)   4  N 

Oregon    2, 3 – (.4750)    5  N 

Oregon State   3 – (1.00)    5  N 

UCLA    2, 3 – (.4992)    7  N 
  
Washington State  5, 6, 7, 8 – (.25)   5  Y 

TOTAL          3:5 

For the off-line models, whose objective function is non-linear given that our utility functions 
are non-linear, I used the CVX solver (http://www.stanford.edu/ ̃boyd/cvx).  With the CVX 
solver, I found optimal objective function values for both the exponential and logarithmic 
models.  The code for this is in Appendix B. 

CVX OPTIMAL VALUES 

    Log Utility Function  Exp Utility Function  

Arizona   +1081.38   +1081.28   
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California   +421.822   +422.994   

Colorado   +264.365   +264.837   

Notre Dame   +405.033   +405.184   

Oregon    +69.3689   +70.259   

Oregon State   +203.835   +204.922    

UCLA    +216.745   +217.874   
  
Washington State  +200.309   +201.093   

TOTAL   +2862.8579   +2868.443   

Conclusions 

Comparing the two on-line models, it is clear that U(1) accepts far more bids (near the 
order of 10x more bids), likely because it is prone to taking on more risk than U(2).  Given that 
the logarithmic utility function is monotonic and increasing, the worst-case loss represented by 
U(1) is in fact unbounded (approaches ∞).  On the other hand, our exponential utility function 
only approaches a worst-case loss of (b/m)log(N).  For more information on worst-case losses of 
such utility functions, refer to source [3].   

Regarding predictive power, there is no clear winner between the two on-line models.  
Both predicted the same number of outcomes correctly in our admittedly small sample size.  
Nevertheless, U(2) was able to do so in a more clear, efficient manner.  Rather than having the 
most probable outcomes dispersed among 6 or 7 of the 8 states like U(1), we achieved the same 
result with narrowing that field consistently down to 3 or 4 probable states.  Therefore, in some 
sense U(2) acted with a better, or more efficient, predictive power. 

Now let’s turn our attention to the off-line models.  The objective values obtained from 
the CVX optimization of the two off-line models were strikingly similar.  There are only minor 
discrepancies, and on the whole, the market-maker turns quite a nice profit, only coming 
somewhat close to dipping under in the Oregon game (NOTE: the fortuitous result of this game 
was highly unexpected which may have contributed to the lower earnings).   

Given the similarity between optimal values for the offline exponential and logarithmic 
utility functions, and the large difference between bids accepted from the on-line models, I have 
to conclude that the on-line model is much more susceptible to risk.  Otherwise, we would see a 
similar number of bids accepted in the on-line models as well as similar optimal values in the 
off-line models.  A few early bids in the on-line logarithmic model specifically can significantly 
change the price vector in such a manner that the market-maker will accept later bids that will 
ultimately be bad for business.  This simply highlights the grand importance of choosing a 
utility function with a minimal and strictly bounded worst-case loss.  High risk, high reward 
does not always pay off. 
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Appendix A 

What follows is simply the MATLAB code for solving the on-line formulations of both the 
logarithmic  (Appendix A) and exponential (Appendix B) utility function auction models.  The 
initialization needed for both solvers ironically comes last (Appendix C). 

LOGARITHMIC UTILITY FUNCTION 

• logAuction.m 

% This function will solve one iteration of the optimization problem, given a bid (a), a 
price limit (pi) and a quantity limit (qt) among other given parameters.  AcceptCounter 
counts the number of accepted bids and rejectCounter does the same for rejected bids.  
Param must be between 0 and 1.  M is the number of states, p is the price vector, and b 
is the bid vector.
function [b, p, acceptCounter, rejectCounter] = 
logAuction(p,b,param,m,a,pi,qt,acceptCounter,rejectCounter)
 
% Step 1
if(a*p > pi)
    rejectCounter(:) = rejectCounter(:) + 1;
else
    % Step 2
    % Setting up the equation.
    syms y ybar;
    sumOneInStepTwo = 0;
    
    for (n=1:length(a))
        ait = a(n);
        bitminus = b(n);
        eqn = ((param/m)*(1/(y - ait*qt - bitminus)));
        sumOneInStepTwo = sumOneInStepTwo + eqn;
    end
    Y = solve(sumOneInStepTwo == 1);
    
    for(n=1:length(Y))
        if Y(n) > (a(n)*qt - b(n));
            ybar = Y(n);
        end
    end
    sumTwoInStepTwo = 0;
    
    for (n=1:length(a))
        ait = a(n);
        bitminus = b(n);
        eqn = (ait*(param/m)*(1/(ybar - ait*qt - bitminus)));
        sumTwoInStepTwo = sumTwoInStepTwo + eqn;
    end
    % Check to see if our optimal ybar is acceptable or not
    if (pi > sumTwoInStepTwo)
        x = qt;
        bnew = b + a.'*qt;
        for (n=1:length(p));
            bit = bnew(n);
            p(n) = (param/m)*(1/(ybar - bnew(n)));
        end
        acceptCounter = acceptCounter + 1;
        b = bnew;
        % If ybar is not acceptable move on to Step 3  + pi*x - ybar +
    else
        % Step 3
        syms x y;
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        sumOneInStepThree = 0;
        
        % Solve for x in terms of y
        for (n=1:length(a))
            ait = a(n);
            bitminus = b(n);
            eqn = ((param/m)*(1/(y - ait*x - bitminus)));
            sumOneInStepThree = sumOneInStepThree + eqn;
        end
        
        Y = solve(sumOneInStepThree == 1, x);
        x = Y;
        % Solve for y outright
        sumTwoInStepThree = 0;
        
        for (n=1:length(a))
            ait = a(n);
            bitminus = b(n);
            eqn = (ait*(param/m)*(1/(y - ait*x - bitminus)));
            sumTwoInStepThree = sumTwoInStepThree + eqn;
        end
        
        Y = solve(sumTwoInStepThree == pi, y);
        y = Y;
        % Solve for x outright
        syms x;
        sumThreeInStepThree = 0;
        
        for (n=1:length(a))
            ait = a(n);
            bitminus = b(n);
            eqn = ((param/m)*(1/(y - (ait)*x - bitminus)));
            sumThreeInStepThree = sumThreeInStepThree + eqn;
        end
        
        Y = solve(sumThreeInStepThree == 1, x);
        x = Y;
        % Update variables accordingly
        bnew = b + a.'*x;
        for (n=1:length(p))
            bit = bnew(n);
            p(n) = (param/m)*(1/(y - bnew(n)));
        end
        acceptCounter = acceptCounter + 1;
        b = bnew;
    end 
end
end 

• logAuctionSolver.m 

% This function will take our input data from the class game, and run through each bid, 
resolving the optimization problem each time, resulting in new price and bid vectors all the 
while.
function [b p acceptCounter rejectCounter] = 
logAuctionSolver(p,b,param,m,a,pi,qt,acceptCounter,rejectCounter,priceVector,quantityVector,
A)
 
for (n=1:length(priceVector));
    pi = priceVector(n);
    qt = quantityVector(n);
    a = A(1,:);
    [b p acceptCounter rejectCounter objectiveValue] = 
logAuction(p,b,param,m,a,pi,qt,acceptCounter,rejectCounter);
end
p
acceptCounter
rejectCounter
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Appendix B 
EXPONENTIAL UTILITY FUNCTION 

• expAuction.m 

% This function will solve one iteration of the optimization problem, given a bid (a), a 
price limit (pi) and a quantity limit (qt) among other given parameters.  AcceptCounter 
counts the number of accepted bids and rejectCounter does the same for rejected bids.  
Param must be between 0 and 1.  M is the number of states, p is the price vector, and b 
is the bid vector.

function [b, p, acceptCounter, rejectCounter] = 
expAuction(p,b,param,m,a,pi,qt,acceptCounter,rejectCounter)
% Step 1
if(a*p > pi)
    rejectCounter(:) = rejectCounter(:) + 1;
else
    % Step 2
    % Setting up the equation.
    syms y;
    sumOneInStepTwo = 0;
    
    for (n=1:length(a))
        ait = a(n);
        bitminus = b(n);
        eqn = ((param/m)*exp(-1*(y - ait*qt - bitminus)));
        sumOneInStepTwo = sumOneInStepTwo + eqn;
    end
    
    Y = solve(sumOneInStepTwo == 1);
    
    for(n=1:length(Y))
        if Y(n) > (a(n)*qt - b(n));
            ybar = Y(n);
        end
    end
    
    sumTwoInStepTwo = 0;
    
    for (n=1:length(a))
        ait = a(n);
        bitminus = b(n);
        eqn = (ait*(param/m)*exp(-1*(ybar - ait*qt - bitminus)));
        sumTwoInStepTwo = sumTwoInStepTwo + eqn;
    end
    
    % Check to see if our optimal ybar is acceptable or not
    if (pi > sumTwoInStepTwo)
        x = qt;
        b = b + a.'*qt;
        for (n=1:length(p));
            bit = b(n);
            p(n) = (param/m)*exp(-1*(ybar - b(n)));
        end
        acceptCounter = acceptCounter + 1;
        
        % If ybar is not acceptable move on to Step 3
    else
        % Step 3
        syms x y;
        sumOneInStepThree = 0;
        
        % Solve for x in terms of y
        for (n=1:length(a))
            ait = a(n);
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            bitminus = b(n);
            eqn = ((param/m)*exp(-1*(y - ait*x - bitminus)));
            sumOneInStepThree = sumOneInStepThree + eqn;
        end
        
        Y = solve(sumOneInStepThree == 1, x);
        x = Y;
        
        % Solve for y outright
        sumTwoInStepThree = 0;
        
        for (n=1:length(a))
            ait = a(n);
            bitminus = b(n);
            eqn = (ait*(param/m)*exp(-1*(y - ait*x - bitminus)));
            sumTwoInStepThree = sumTwoInStepThree + eqn;
        end
        
        Y = solve(sumTwoInStepThree == pi, y);
        y = Y;
        
        % Solve for x outright
        syms x;
        sumThreeInStepThree = 0;
        
        for (n=1:length(a))
            ait = a(n);
            bitminus = b(n);
            eqn = ((param/m)*exp(-1*(y - ait*x - bitminus)));
            sumThreeInStepThree = sumThreeInStepThree + eqn;
        end
        
        Y = solve(sumThreeInStepThree == 1, x);
        x = Y;
        
        % Update variables accordingly
        b = b + a.'*x;
        for (n=1:length(p))
            bit = b(n);
            p(n) = (param/m)*exp(-1*(y - b(n)));
        end
        acceptCounter = acceptCounter + 1;
    end
end
end
  

• expAuctionSolver.m 

% This function will take our input data from the class game, and run through each bid, 
resolving the optimization problem each time, resulting in new price and bid vectors all the 
while.

function [b p acceptCounter rejectCounter] = 
expAuctionSolver(p,b,param,m,a,pi,qt,acceptCounter,rejectCounter,priceVector,quantityVector,
A)
 
for (n=1:length(priceVector));
    pi = priceVector(n);
    qt = quantityVector(n);
    a = A(1,:);
    [b p acceptCounter rejectCounter] = expAuction(p, b, param, m, a, pi, qt, acceptCounter, 
rejectCounter);
end
p
acceptCounter
rejectCounter 
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Appendix C 
% Initializing from class data
% file = 'dataARIZONA.xlsx' -- This could be any of the relevant Excel data  
% sets, and needs to be called in order to make the variable below, data,    
% meaningful.
 
% could be the data from any game
file = 'dataND.xlsx' 
data = xlsread(file);
priceVector = data(:,2)
quantityVector = data(:,1)
A = data(:, 3:10)
m = 8
param = .5
p = ones(m,1)/m
b = ones(m,1)
rejectCounter = 0
acceptCounter = 0
 
% Given the setup, here are the lines that would need to be called to solve
% our call auction online model for the ARIZONA data, returning how many
% bids were accepted, how many were rejected, and what the final price 
% vector was:
    

%InitializeAuction  
%expAuctionSolver(p,b,param,m,a,pi,qt,acceptCounter,rejectCounter,priceVector,q
uantityVector,A)   
%logAuctionSolver(p,b,param,m,a,pi,qt,acceptCounter,rejectCounter,priceVector,q
uantityVector,A)

    
% This code below would create one's own simulation data according to three
% different belief groups that would assign a certian belief value to each
% state.  This example is built for 5 states only and could easily be extended.
 
%priceVector = zeros(100,1)
%quantityVector = randi(100,[100,1])
%A = zeros(100,5);
%for n=1:100
%a = [randi([0 1], 1, 8) ones(1,8)];
%a = a(randperm(5));
%A(n,:) = a;
%end
%A
 
%for(n=1:33)
%   priceVector(n) = A(n,:)*[.2+(.4-.2)*rand(1,1); .1*rand(1,1); .1*rand(1,1); .2+(.
3-.2)*rand(1,1); .1*rand(1,1)]
%end
 
%for(n=33:66)
%   priceVector(n) = A(n,:)*[.1*rand(1,1); .1+(.4-.1)*rand(1,1); .1+(.2-.
1)*rand(1,1); .2*rand(1,1); .1*rand(1,1)]
%end
 
%for(n=67:length(priceVector))
%   priceVector(n) = A(n,:)*[.2*rand(1,1); .2*rand(1,1); .1*rand(1,1); .
1*rand(1,1); .3+(.4-.3)*rand(1,1)]
%end


